.....

Primo Progetto ASD 2018/2019

Cristian Consonni/Lorenzo Ghiro

Montresor Va Alla Guerra

Primo Progetto ASD 2018/2019

Cristian Consonni/Lorenzo Ghiro

La Guerra di Montresor

Truppe nemiche hanno attaccato la Repubblica di Asdonia. Lo stato maggiore ha affidato la preparazione del contrattacco al generale Montresor.

Siete stati chiamati a raccolta per discutere del piano di contrattacco.

Il generale è noto per essere un impareggiabile condottiero. Le sue grandi abilità strategiche gli permettono di guidare le truppe spingendole a compiere incredibili ed eroiche gesta.

Questa volta però la missione è davvero difficile.

Il Generale Montresor (reperto fotografico)

La missione

Si tratta di portare l'**arma finale** nella posizione di attacco. Il generale è in possesso infatti di un'arma in grado di determinare le sorti della guerra.

La potentissima arma ha però una corta gittata ed è molto ingombrante. Portarla nei pressi del campo nemico è davvero un'impresa!

L'assemblaggio

Non solo, passare inosservati è fondamentale per cogliere il nemico di sorpresa. Il generale ha fatto allora smontare l'arma, poi le varie componenti sono state furtivamente paracadutate in un'area nei pressi del *target*, ovvero il luogo in cui il generale ha deciso di posizionare l'arma prima di scatenare l'offensiva.

Un tempismo perfetto

Tutte le componenti hanno un transponder che permette al generale Montresor di conoscere

l'esatta posizione dei vari pezzi sparpagliati nell'area.

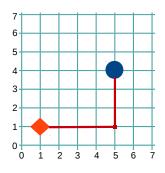
Alcuni soldati sono nascosti e attendono l'ordine per scattare e raccogliere una delle componenti da portare al target.

Queste componenti sono molto pesanti: un soldato che corre è in grado di trasportare un solo pezzo per volta.

Bisogna agire in fretta, altrimenti il nemico potrebbe accorgersi della situazione e vanificare il contrattacco.

Regole per la Missione (I)

- L'area di combattimento è mappata con delle coordinate cartesiane;
- Ognuna delle *C* componenti dell'arma si trova in un certo punto di quest'area, con coordinate (x_c, y_c) ;
- Similmente, ciascuno degli S soldati sul campo è acquattato nel suo nascondiglio iniziale di coordinate (x_s, y_s);


Regole per la Missione (II)

• Data la conformazione del terreno, i soldati si spostano seguendo delle piste prestabilite. Per andare da un punto $A = (x_A, y_A)$ ad un punto $B = (x_B, y_B)$, passeranno dal punto (x_A, y_B) :

distanza di Manhattan

$$d(A, B) = |x_A - x_B| + |y_A - y_B|$$

 Quando corrono, i soldati sono esposti al fuoco nemico. Il generale organizza dei diversivi e ordina ai soldati di correre uno alla volta.

Esempio: il soldato in (5, 4) per andare in (1, 1), percorre una distanza pari a 7

Regole per la Missione (III)

- Il terreno è accidentato, ma i soldati sono ben allenati: corrono sempre a tutta velocità. Percorrono un'unità di spazio per unità di tempo;
- Per recuperare una componente, un soldato impiegherà pertanto un tempo pari alla somma di due distanze: dal suo nascondiglio alla componente, e dalla componente al target;
- A seconda della necessità strategica, a un soldato può venire assegnato il recupero di 0, 1, o più componenti;
 - alcuni soldati possono non essere impiegati nella missione;
 - per recuperare 2 pezzi dell'arma un soldato dovrà andare dal suo nascondiglio fino al primo pezzo, poi fino al target (dove lascia il pezzo), quindi raggiungere il secondo pezzo e portarlo al target, dove rimane.

Il problema

Il generale Montresor vi incarica di definire la strategia per il recupero di tutte le componenti. Conoscendo la disposizione delle componenti nell'area e l'ubicazione dei nascondigli dei soldati, dovete:

Obbiettivo Principale

Calcolare il tempo minimo per raccogliere tutti i pezzi e portarli nel punto prescelto.

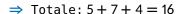
Medaglie al valore

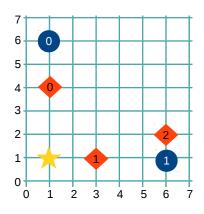
Il generale Montresor è solito premiare i valorosi con onorificenze e medaglie. Per essere imparziale ed equo ha bisogno

Oltre all'obbiettivo principale, per completare la missione avete questo secondo obbiettivo:

di sapere quali e quanti pezzi sono stati recuperati da ciascun soldato.

Obbiettivo Secondario


Consegnare al generale un rapporto completo in cui, per ogni componente, è associato il codice del soldato incaricato del recupero.


Esempio

- Pallini blu: soldati
- Rombi rossi: componenti arma
- Stella gialla: target

Calcolo del tempo minimo:

- Soldato O porta al target il pezzo O. Tempo: 5
- 2. Soldato 1 recupera il pezzo 2 e lo porta al target. Tempo: 7
- Uno dei soldati già al target recupera il pezzo 1 rimasto in campo. Tempo: 4

Input/Output

Input: Un file con 1 + C + S + 1 righe:

- La prima riga riporta 2 numeri interi: il numero di componenti C e di soldati S. Componenti e soldati sono numerati progressivamente a partire da 0;
- Le successive C righe riportano le coordinate di ogni componente: 2 numeri interi separati da spazio;
- Le successive S righe riportano similmente le coordinate dei soldati;
- L'ultima riga riporta le coordinate del target.

Output:

- Un numero intero: il tempo minimo T per completare la missione;
- [opzionale, ma vedete il punteggio] C righe, con un numero intero per riga. L'i-esima di queste righe indica l'id del soldato preposto al recupero dell'i-esimo componente.

Esempio I/O (solo tempo)

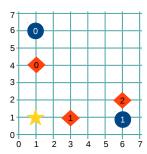
INPUT

3 2

1 4

3 1

6 2


1 6

6 1

1 1

OUTPUT

16

Esempio I/O (completo)

INPUT

3 2

1 4

3 1

6 2

1 6

6 1


1 1

OUTPUT

16

0

1

Assunzioni e note

Assunzioni

- $1 \le C, S \le 1500$
- $\forall (x_i, y_i), -1000 \le x_i, y_i \le 1000$ (ovvero per componenti, soldati e *target*)

Note

- Più soldati o componenti possono trovarsi nella stessa posizione, incluso il target.
- Può succedere che C < S, C = S, o C > S.

Test

Casi di test

- 20 casi di test in totale;
- In almeno 6 casi c'è 1 solo soldato;
- In almeno 15 casi $C, S \leq 500$;
- per superare il progetto e sbloccare l'accesso all'orale -≥ 30 punti

Dataset di esempio

Dataset di esempio (con input e output) su

https://judge.science.unitn.it/slides/asd18/dataset_guerra.zip

Punteggi

Ogni caso di test vale 5 punti. Il punteggio massimo è di 100 punti.

Per ogni caso di test per cui la vostra soluzione fornisce un output entro i limiti di tempo e memoria:

- calcolare correttamente il tempo minimo *T* e fornire al contempo un *rapporto corretto* vale 5 punti;
- calcolare correttamente solo il tempo minimo fa guadagnare 3 punti;
- se T è errato: O punti;
- se T è corretto, ma il rapporto è errato: O punti.
- ⇒ con *T* errato (non minimo) si prendono sempre 0 punti.

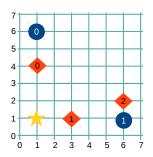
^{*}rapporto corretto: vedere la prossima slide a proposito del correttore.

Correttore

Come verifichiamo la correttezza delle vostre risposte?

Tempo minimo

Confronto con il valore ottimo calcolato con la soluzione di riferimento.


Correttezza rapporto

Possono esistere più rapporti ammissibili. Pertanto verificheremo che – per come avete assegnato i soldati alle varie componenti – sia veramente possibile ricondurre tutte le componenti al target nel tempo che avete calcolato.

Esempio output alternativi

- 3 2
- 1 /
- 3 1
- 6 2
- 1 6
- 6 1
- 1 1

OUTPUT	OUTPUT
16	16
0	0
1	0
1	1

Consegna

Consegna

giovedì 13 dicembre ore 18:00

 Per caricare il vostro codice, recatevi su https://judge.science.unitn.it/arena/

Avete poco più di una settimana di tempo, se avete difficoltà non esitate a chiederci aiuto!

- potete venire a ricevimento
- risponderemo alle vostre mail

... ma non durante il week-end :)

Valutazione

- Il progetto è superato con ≥ 30 punti;
- Il progetto darà da 1 a 3 punti bonus allo scritto;
- Con la soluzione minima (≥ 30 punti) prendente almeno 1 punto bonus e sbloccate l'accesso all'orale;
- Il ranking è disponibile all'indirizzo:
 https://judge.science.unitn.it/arena/ranking/;
- Conta il punteggio dell'ultimo sorgente inviato al sistema;
- Limite di 40 sottoposizioni per gruppo;

Dataset di esempio

- È un dataset generato in modo analogo a quello usato da arena per la valutazione dei sorgenti che potete usare per provare le vostre soluzioni in locale;
- 20 casi di input con i corresponti output, ma con solo T;
- Scaricabile da:
 - https://judge.science.unitn.it/slides/asd18/dataset_guerra.zip
- Non usate il sistema di valutazione come compilatore!

Do's

È permesso:

- 1. Discutere all'interno del gruppo
- 2. Chiedere chiarimenti sul testo
- 3. Chiedere opinioni su soluzioni
- 4. Sfruttare codice fornito nei laboratori
- 5. Utilizzare pseudocodice da libri o Wikipedia
- 6. Richiedere aiuto (anche pesante) per la soluzione "minima"
- 7. Venire a ricevimento

Dont's

È vietato:

- 1. Discutere con altri gruppi
- 2. Mettere il proprio codice su repository pubblici
- 3. Utilizzare codice scritto da altri
- 4. Condividere codice (abbiamo potenti mezzi!)

Ricevimento

Giorno	Data	Orario
giovedì	06/12	14:00-16:00
venerdì	07/12	10:00-12:00
lunedì	10/12	14:00-16:00
martedì	11/12	15:30-17:30 (lab)
mercoledì	12/12	10:00-12:00
giovedì	13/12	10:00-12:00

AVVISATECI VIA MAIL

Prima di venire a ricevimento è obbligatorio richiedere appuntamento via mail! Mettete entrambi gli esercitatori tra i destinatari.

lorenzo.ghiro@unitn.it cristian.consonni@unitn.it