ASD Laboratorio 01

Cristian Consonni/Alessio Guerrieri

UniTN

10/10/2017

CONTATTI

ISTRUTTORI

Cristian Consonni (cristian.consonni@unitn.it)
Alessio Guerrieri (a.guerrieri@unitn.it)

RICEVIMENTO

Consonni: via email e ufficio Open Space 9, Povo 2 (dopo il ponte, di fronte all'ufficio del prof. Montresor)

Guerrieri: via email

SITI INTERNET

Slides laboratorio (caricate in giornata):

http://judge.science.unitn.it/slides/

Judge: http://judge.science.unitn.it

Accesso a Judge tramite registrazione su:

http://judge.science.unitn.it/registration

CALENDARIO

10/10	Introduzione
31/10	Ad-Hoc
14/11	Grafi 1
28/11	Grafi 2
05/12	Progetto 1
12/12	Progetto 1

Progetto:

- 05 13 dicembre;
- Iscrizione dei gruppi ai progetti entro il 04 dicembre:

http://bit.ly/ASDprog

PERCHÉ FARE UN LABORATORIO

DA PSEUDOCODICE A CODICE

	Т					141	1 _{V2}	11/10	9 _{V4}	9V4	*74	r _{VV}	e_{V_0}	019	6V10	Working Variables ⁹ V ₁₁	0 _{V12}	e _{V13}	1 _{V21}	1 V 22	TV23	0V24
	- 1					.,,		0	0		0		0	0	0	- 1			0	0	0	- 124
1	- 1	Variat	or Variables	Indication of		ı.					0											
1 5	É	acte	receiving	change in the value on any Variable	Statement of Results			0	0	0	0								Bits a fract.	B is a fee.	S to a	
Number of Operation	- 18			Variable			2	4	0	0	0	0		0	0		0		400	200	500	0
ž	2					1	2												В1	$R_{\rm S}$	R ₅	81
	\pm			Or Iv.1																		
1	ľ	Iv.	v ₀ 1 _{V4} , 1 _{V5} , 1 _V v ₁ 2 _{V4} ,	11.00	- 2n - 1		,		2n 2n - 1	24	24											
,	- [v ₁ Pv ₂		= 2n + 1	١,				2n+1												
ľ			v ₄ /v ₁₁		- 30-1				0	0						\$0::-}						
i,	- [Pvv = 2vvd																		
	- [1		V2 PV11	1 V2 - V2	- 1 - 20-1		1									6 - 80-1						
	- [v ₁₁ 1v ₁₁	1 Van - Van	$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} - \Lambda_0$													$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} - \Lambda_0$				
Ľ.	-	1v3 -		Tivi - Ivi	= n - 1(= 3)	1									n - 1							_
5	- 1	1V2+		\	= 2+0=2		2					2										
9	- 1		v ₇ *v ₁₃	[avii = avii]	- 2p - A1						2+	2				2g. — A1						
30	- 12		V ₁₃ ¹ V ₁₂		= B ₁ · 20 = B ₁ A ₁											$\frac{2a}{2} - A_1$			151			
11	- 1	1V19+	V _D ² V _D		$= -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \cdot \dots$												0	$\left\{-\frac{1}{2}\cdot\frac{2m-1}{2m+1}+B_1\cdot\frac{2n}{2}\right\}$				
12	_	1V10 -	v ₁ 2v ₁₀		= n - 2(= 3)	1									n-2							
33 [1	1V6 -	V ₁ ² V ₆	$\begin{cases} {}^{1}V_{0} & = {}^{2}V_{0} \\ {}^{1}V_{1} & = {}^{1}V_{1} \end{cases}$	= 2n - 1	1					2n-1											
34	Jŀ	1V1 +	Vy 2Vy	$\begin{cases} {}^{1}V_{1} & = {}^{1}V_{1} \\ {}^{1}V_{7} & = {}^{2}V_{7} \end{cases}$	= 2 + 1 = 3	1						3										
35	11	2V6 ÷	Vy 1V8	$ \begin{cases} 2V_6 & = & 2V_6 \\ 2V_7 & = & 2V_7 \end{cases} $	= 2n-1						2n-1	3	$\frac{3}{3a-1}$									
36	Ų	1Vs ×	r ₁₁ (v ₁₁		$=\frac{2n}{2}\cdot\frac{2m-1}{3}\dots$											2p - 2n - 1						
17	1	2V6 -	v ₁ ³ v ₆	$ \begin{bmatrix} 2V_0 & - & 2V_0 \\ V_1 & - & V_1 \end{bmatrix} $	= 2n - 2	1					2n-2											
35 {	J.	1V1+	vy 2vy	$\left\{ \begin{bmatrix} 2V_T & = & 2V_T \\ 1V_1 & = & 1V_1 \end{bmatrix} \right\}$	- 5 + 1 - 4	1						4										
39)	3V6 ÷	v ₇ 1v ₉	$\left\{ \begin{array}{cccc} a_{V_0} & = & a_{V_0} \\ a_{V_T} & = & a_{V_T} \end{array} \right\}$	= 24-2						2n-2	4		$\frac{2n-2}{4}$								
20	Ų,	$^{1}V_{9} \times$	r ₃₁ s _{V33}	{*v ₉ = °v ₉ *v ₁₁ = °v ₁ }	$= \frac{2n}{2} \cdot \frac{2n+1}{3} \cdot \frac{2n+2}{3} = \Lambda_3 \cdot \cdot \cdot \cdot \cdot \cdot$									0		$\left\{\frac{2n}{2}\cdot\frac{2n-1}{2}\cdot\frac{2n-2}{4}\right\}=A_0$						
21	,	1 V 22 ×	v ₁₁ e _{v₁₂}	PV: 2 V:	$=\mathbb{R}_3\cdot\tfrac{2n}{2}\cdot\tfrac{2n-1}{3}\cdot\tfrac{2n-2}{4}=\mathbb{R}_5\Lambda_5$												ByAy			B ₅		
22	-	$^{2}V_{12} +$	v ₁₃ b _{V13}	2V12 - 2V12 2V13 - 2V13	- A ₀ + B ₁ A ₁ + B ₃ A ₃												0	$(A_8+B_1A_3+B_3A_3)$				
33 (ŀ	2V10 -	v ₁ v ₁₀	$\begin{cases} {}^{2}V_{39} & = {}^{9}V_{10} \\ {}^{1}V_{1} & = {}^{1}V_{1} \end{cases}$	= n - 3(= 1)	1									n – 3							
	Here follows a repetition of Operations thirtoen to twenty-throe																					
24	1	4V13 +	v ₂₄ 1 _{V24}	$\begin{cases} {}^{1}V_{13} & = & {}^{0}V_{13} \\ {}^{0}V_{24} & = & {}^{1}V_{24} \end{cases}$	- b ₇												ļ					By
				$\begin{cases} 1_{V_1} = 1_{V_1} \\ 1_{V_2} = 1_{V_2} \end{cases}$	= n + 1 = 4 + 1 = 5																	
25	1	1V1+	v ₀ 1v ₀	5V0 = 0V0 5V7 = 0V7	by a Variable-card. by a Variable-card.	1		n+1			0	0										

OBIETTIVI DEL LABORATORIO

CAPACITÀ	ATTIVITÀ					
Sapere la differenza fra pseu-	Passaggio da pseudocodice					
docodice e chiacchiere	a codice					
Utilizzare i concetti imparati a	Risoluzione di problemi					
lezione						
Saper valutare l'efficienza di	Test automatizzato usando					
un algoritmo	dati di differenti dimensioni					

Useremo la Standard Template Library di C++ in modo da evitare la reimplementazione di strutture dati conosciute.

NON OBIETTIVI

Ottimizzazioni a basso livello

```
SCRIVETE COSÌ

float f=...
f*=pow(2,n);
```

```
NON COSÌ

float f=...
if (*(int*)&f & 0x7FFFFFFF) {
    *(int*)&f += n << 23;
}</pre>
```

We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil Donald Knuth

LEZIONE TIPO

- Soluzioni lab precedente (con consegna sorgenti)
- Descrizione di 3/4 problemi:
 - Traduzione da pseudocodice a codice
 - Problema semplice
 - Problema complicato
 - Vecchio progetto (non tutte le settimane)
- Lavoro individuale/gruppo per resto laboratorio

Purtroppo, oggi ci saranno anche chiacchere

CMS: CONTEST MANAGEMENT SYSTEM

Creato per l'edizione 2012 delle olimpiadi internazionali d'informatica

FUNZIONAMENTO

- Per ogni problema il sistema ha dei file di input ed una soluzione "ufficiale"
- Le vostre soluzioni devono leggere i dati di input da "input.txt" e scrivono su "output.txt"
- Il sistema riceve il sorgente e lo esegue per ogni file di input con un time limit per il singolo caso
- La soluzione riceve un punteggio da 0 a 100, in base a quante volte ha scritto la risposta corretta in tempo

ESEMPIO DI SOLUZIONE

```
#include <fstream>
using namespace std;
int main(){
  int N, M;
  ifstream in("input.txt");
  in >> N >> M;
  ofstream out ("output.txt");
  out << N+M << " \ n";
  return 0;
```

CMS: CONTEST MANAGEMENT SYSTEM

- Accessibile da http://judge.science.unitn.it
- Nome utente/password su: http://judge.science.unitn.it/registration
- Sorgenti in C/C++

SISTEMA DI SVILUPPO

- (Emacs/vim/gedit) + terminale
- Netbeans + Plugin C/C++

Altre possibilità:

- Eclipse + Plugin C/C++
- Codeblocks
- Geany
- Atom
- ...

Real programmers code in binary.

PROGETTI

- 1 progetto in questo semestre
- 2 progetti nel prossimo semestre con valutazione unificata
- Gruppi da 2 o 3 persone
- 8.5 giorni di tempo (\sim 200 h)
- Sottoposizione usando CMS
- Progetto superato se la soluzione fa almeno 30 punti su 100
- Iscrizione su
 http://bit.ly/ASDprog

PROGETTI: VOTI

- È necessario superare almeno un progetto(*) per accedere allo scritto
- I progetti completati durante il corso danno punti bonus allo scritto
- Primo progetto da 1 a 3 punti
- Secondo e terzo progetto da 1 a 2 punti
- Punteggio dato in maniera competitiva
- Il progetto non è una barriera aggiuntiva
- (*) per chi fa solo il primo modulo è necessario superare il primo

COPIATURE

- Vietata collaborazione di alcun tipo fra i gruppi
- Potete chiedere agli assistenti in caso di difficoltà
- Abbiamo potenti mezzi...
- Copiando guadagnate al massimo 1/2 punti allo scritto
- Se vi becchiamo...

COMPILAZIONE E CODING PRACTICES

NOTE DI COMPILAZIONE

- Sul server viene usato -DEVAL
- Consigliato C++ per le librerie
- Standard C++11 consigliato (più semplice!)

I miei esempi saranno C++11 (compila con -std=c++0x)

STANDARD TEMPLATE LIBRARY

```
#include <...>
using namespace std;
```

Documentazione online (anche su judge)

http://www.cplusplus.com/reference/

IFSTREAM

Lettura e scrittura su file. Come cout e cin, riconoscono il tipo delle variabili passate ed ignorano spazi ed invii.

LETTURA INPUT

```
#include <fstream>
using namespace std;
int main(){
  ifstream in ("input.txt");
  int N:
  in >> N:
  for (int i=0; i<N; i++) {</pre>
    int a;
    in>>a;
```

IFSTREAM

Lettura e scrittura su file. Come cout e cin, riconoscono il tipo delle variabili passate ed ignorano spazi ed invii.

```
SCRITTURA OUTPUT
    ofstream out ("output.txt");
    out << N << endl:
    for(int el:vec) {
      out << el << endl:
    return 0;
```

CODING: VECTOR

Equivalente all'arraylist di java.

```
#include<vector>
//Crea vector di interi
vector<int> intvec;
//Crea vector di 7 float inizializzati a 0.5
vector<float> floatvec(7,0.5);
//Accedi agli elementi
floatvec[2]=floatvec[5]+0.1;
//Aggiungi un elemento in fondo al vector
intvec.push back (231);
//Cicla sugli elementi:
for(int i=0;i<intvec.size();i++)</pre>
  intvec[i]=12;
//Ridimensiona vector
intvec.resize(100);
```

CODING: PAIR

Coppia di elementi.

```
#include <utility>
//pair di intero e float
pair<int,float> coppial
//assegnazione elementi
coppial.first=2;
coppial.second=3.4;
coppial=make_pair(15,0.4);
//coppia di coppie
pair<pair<int,int>, pair<int,int> > c;
```

CODING: SORT

```
#include <algorithm>
//ordinare un array di N elementi
sort(arr,arr+N);
//ordinare un vector
sort(vec.begin(),vec.end());
```

CODING: SORTING STRUCTS

```
#include <algorithm>
#include <vector>
using namespace std;
struct stud{
  int id;
  int voto;
};
bool operator < (const stud a, const stud b) {</pre>
  return a.voto < b.voto;
int main(){
  vector<stud> arr(2);
  arr[0].id=1; arr[0].voto=30;
  arr[1].id=2; arr[1].voto=20;
  sort(arr.begin(),arr.end());
```

CODING: CODA

```
#include <queue>
//Dichiarare coda di interi
queue<int> q;
//Aggiungere un elemento alla coda
q.push(23);
//Leggere l'elemento in testa alla coda
int el=q.front();
//Eliminare l'elemento in testa alla coda
q.pop();
//Controllare se la coda e vuota
if(q.empty())
```

CODING: PILA

```
#include <stack>
//Dichiarare pila di interi
stack<int> s:
//Aggiungere un elemento in cima alla pila
s.push(23);
//Leggere l'elemento in cima alla pila
int el=s.top();
//Eliminare l'elemento in cima alla pila
s.pop();
//Controllare se la pila e vuota
if(s.empty())
```

NOTE SU C++11

- For-each
- auto
- Move operator

```
vector<int> arr= ...;
for(int el:arr) {
  cout << el << endl;
for(int& el:arr) {
  el++;
auto d=23;
for(auto& el:arr) {
  el+=d;
return arr;
```

SOMMA DI DUE NUMERI

Dati due interi, sommateli.

INPUT.TXT

Due interi N,M separati da spazio

OUTPUT.TXT

Un intero, uguale alla somma di N e M.

Esempio:

input.txt output.txt

2 3

5

SOTTOSEQUENZA DI SOMMA MASSIMA

Data una sequenza di interi, trovare la sottosequenza di somma massima

INPUT.TXT

N+1 righe: Il numero di elementi N sulla prima riga e gli N elementi nelle N righe seguenti.

Esempio:

_	compic.	
	input.txt	output.txt
	5	11
	3	
	-2	
	4	
	1	
	5	

SOTTOMATRICE DI SOMMA MASSIMA

Data una matrice di interi, trovare la sottomatrice di somma massima

INPUT.TXT

R+1 righe: R e C (numero di righe e di colonne) sulla prima riga, C interi su ognuna delle seguenti R righe.

Esempio:

input.txt output.txt

3 4 18
2 -9 2 3
1 4 5 1
-2 3 4 1

NATALE A FLATLANDIA

- Vecchio progetto di algoritmi
- Slides sul sito (secondo progetto, a. a. 2014/2015):
 http://judge.science.unitn.it/slides/asd14b/prog2.pdf
- Esiste soluzione con Programmazione Dinamica
- Esiste anche soluzione ad-hoc.

LAVORATE!

- Se non avete già un account: http://judge.science.unitn.it/registration
- Implementate una soluzione per il problema della somma e testatela su http://judge.science.unitn.it
- Sisolvete uno (o entrambi) gli altri problemi
- Non usate judge come compilatore!
- 5 Studenti di matematica mi vengano a parlare

Note

I file C++ devono avere l'estensione .cpp